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Abstract. A linear connection is defined on the spat€E of N-jets of sections of : E — B,
where B is one-dimensional. This is a first step toward classifying- 1)th-order, time-
dependent ordinary differential equations. The module of vector fieldg B splits into
coordinate invariant componentd, + 1 of them isomorphic and one component generated by
the differential equation field. The connection is shown to uniquely determine the differential
equation field to which it is associated.

1. Introduction

Recent advances in the geometric theory of second-order ordinary differential equations
(SODE) have provided a linear algebraic criterion for the complete decoupling of systems
of SODE [2, 13] and significant progress in the inverse problem of Lagrangian mechanics
[7]. Within the last two years, there have been results which make it possible to identify
those systems of SODE which are equivalent to trivial systems [5] or to systems in which the
forces are independent of velocities [14]. Central to these results have been two geometric
objects, thedynamical covariant derivativ&/ and theJacobi endomorphisn®, defined in
[12,13]. These objects arise in the theory of tensor fields defined along the tangent bundle
projection, developed principally by Mamez, Cariena and Sarlet [11,12,19]. They are a
development of the generalized vector fields originally introduced by Johnson [9].

Given the utility of these objects in the study of SODE, it is reasonable to ask if similar
structures can be found for systems of higher-order ordinary differential equations (HODE).
This paper is a first step towards their construction.

Some of the necessary structure is known: a paper published in 1986 by Crampin, Sarlet
and Cantrijn [6] explored the geometry of HODE on the higher-order tangent b@vidie
(in the case of §¥ + 1)th-order ODE on the manifolds). This built on earlier work by
authors such as Tulczyjew [20], deedn [8] and Krupka and Musilova [10]. In particular
Crampinet al established conditions for a given system of HODE to be derivable from
a higher-order Lagrangian and formulated a ‘prototype Noether’'s theorem’ which reduced
to Noether's in the SODE case. There has also been recent work directed at applying the
theory of vector fields along the projection to HODE [3]. However, the core of the theory
of vector fields along the tangent bundle projection is that the moguteym) of vector
fields onT M splits as the direct sum afertical and horizontal submodules,

x(TM)=V(TM)®H(TM)
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with the V(T M) and H(T M) being isomorphic. The choice of a horizontal submodule
specifies a horizontal subspaceIpf T M) at each poinp € T M and is therefore equivalent
to a Cartan—Ehresmann connection®® (see for example [4, 15]), which can in turn be
used to define a linear connection on the jet spatE [1]. | will show in section 3 that

a similar linear connection can be constructed JOhE provided there is an appropriate
invariant decompostion of (JVE).

In the SODE theory this connection is determined &S, the Lie derivative of the
vertical endomorphism with respect to the differential equation field. Hence the problem
with the current state of knowledge of higher-order systems: the eigenspadgss aire
too big. Although Crampiret al in [6] use the HODE to define a splitting

x(TNM) = V(T M) ® H(TM)

the dimension ofH(T M) is N times that of V(T M), so they cannot be isomorphic when
N > 1. In their recent work Cafiena, Lopez and Mdrtez do not address the question of
splitting. Since they study the higher-order tangent bundle as a nested structure of tangent
bundles, they are confronted by the lack of a differential equation field with which to define
a connection except on the ‘top’ tangent space.

What is really needed is a further splitting of the horizontal space

N-1
X (@ M) = V(TN My & P H™ (TN M)
m=0
such that all the submodul@s™ (T M) are isomorphic ta(T M). Of course they should
also be invariant under coordinate transformations, disqualifying a naive approach based on
induced coordinates.

In this paper | will prove that such a splitting exists and explicitly construct the
submodules{" and the linking isomorphisms in section 4. In fact I will work not with
TN M but in the more general setting of tdéh-order jet bundle/NE, wheret : E — B
is a fibre bundle over a one-dimensional base (the independent variable) whose fibres are
homeomorphic toM. This allows the study of time-dependent HODE (‘time’ being a
generic term for the independent variable).

In sectim 5 | note some properties of the resulting linear connection. In particular it
will be proved that the map from HODE to linear connection is one-to-one. Hence the
classification of HODE up to time-dependent transformations of the dependent variables is
equivalent to the classification of the associated linear connections.

2. Background and notation

Let T : E — B be a smooth fibre bundle with one-dimensional bAsd will write J¥E
for the Nth-order jet-bundle of section8 — E. A typical fibre t=1(b) will be called M.

Then if¢ is a local coordinate oB andx = (x1,...,x™) are local coordinates oM, |
will implicitly assume some local trivialization and take x) = (¢, x*, ... , x™) to be local
coordinates orE. These induce coordinatés x, x., . .. , X)) for JVE, so that the point

with these coordinates is th€-jet containing the section
1 2 1 N
s> x+xa(s — 1)+ 5xp( —1) +~-~+mx(N)(s—t) .

Using this correspondence, smooth coordinate transition functiong émduce smooth
transition functions oW~ E. | will also use the standard notatiofxz, [x]) for a function
evaluated at some point of¥ E, with [x] denoting dependence on the derivativescof
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The prolongation of a section is defined by the same correspondenee: & — E
is a section, then the Taylor series expansiorr aibouts determines a poingy,(¢) in
(to n]?,)_l(l). So if the coordinate form of is r — o(z), then the prolongatioay, has
the local expression

N

do o
ow) it (t, o), E([)’ e, dt—N(t)).

The projectionry, : JYE — J"E, n < N, is defined in coordinates by truncation. Thus
there is a projectionr? : JVE — E by the identification/® = E.

The module of sections of the tangent bund@lg” E, denotedy (/Y E), is spanned by
the vector fields

a 0 0 0
{ .. :a=1,...,m}.

.’ 9.4’ aa ’ *Y aa
ar 9x* 9, 9x ()

For the sake of convenience and clarity, from here on | will wWEfé = d/dx(;. It should

be noted that for < N, X is not a point-wise function of/9x“. For this reason | will
insist on distinguishingt?, a vector field on/V E, from X, := 3/3x“ as a vector field on
E. They are related by the projectiorf X0 = X,.

It will be convenient to define the module

X(IVE) :={Y € x(UNE): Y(t) =0}

of vector fields with no time-like component.

If Y is vector field onE, then the flowy, of Y carries sections of to sections by
deforming their graphs. Note that such flows need not preserve the fibressafe [16].
Since sections define points i E, there is a prolongation of. to a flow ¢ of JVE.
This allows us to define the prolongatiott of ¥ by requiring

YeonH = dif oy
€

to hold for all smoothf : JYE — R. The C stands forcomplete liff a term
used by some authors [15] in place of prolongation. The coordinate forriCofif
Y =Y +Y'X, € x(E), is

d
C 0 0 1 N
YE=YO +YOXY Y XD 4+ Y X

where

a . d ‘ a a 0
Yy, = <dt> Y —x4Y%  k=1...,N.

The contact forms oM E are given by
9(“1-) = dxé’j) —xf’jﬂ)dt j=0,...,N—-1
The ideal generated by the contact forms will be dena#edwhile the contact forms
are not tensorial with respect to coordinate change& pthe ideal® is invariant under
such changes. Suppose that B — E is a section whose prolongation gives a section
o) . B — JVE. Then the pull-back of the contact forms satistigs © = 0. Conversely,

any section ofr o 73 : JYE — B which annihilates the contact forms in this way is the
prolongation of a section of : E — B.
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The vertical endomorphisri can be defined in terms of the contact forms as
N—-1 .
Si=) (j+Do, @ XI.
j=0 '
Note that
S(XY) = (j +DxITh j=0,...,N—-1 S(xMy =o0.

Using the fact that

9 S ()
’ <8t> ==X
j=1
the Nijhenhuis bracked/s of S can be shown to satisfy
INS(Y, Z2) =Y (1)S(Z) — Z(1)S(Y).
Thus the resul£S(Y)S = SoLY S derived in [6] for the autonomous case must be modified:
(LSY)SNZ) — SULY S)(Z)) = Y()S(Z) — Z()S(Y). (1)
2.1. The HODE field
Definition 1 The vector fieldl' € x(JVE) is an (V + 1)th-order ODE field, or more
generally a higher-order ODE field (HODE), if it satisfies the two conditions
et @) =1
The second of these conditions effectively fixes the coordinateB:osince B is one-

dimensional, the resulting loss of generality is not great.
In coordinates, a HODE' will have the form

0 — a
i, [x]) = o +x XQ + o xly XNY e DX,

It can easily be checked that the integral curve§ dre prolongations of solutions of the
system of ODE

d N+1
(dt) x=fot, x, ..., X)) a=1 ..., m.
Moreover every solution of this system is the projection of an integral cunie of

3. Linear connections

Consider a manifold/ with a group of automorphism&. There is an induced action of
G on the module of vector fieldg (M). Supposex (M) has aG-invariant decomposition

XxM)=EYDAD--- D Ay N>1

where(¢) is the one-dimensional submodule generateé.bywill require thaté is invariant
underG, in addition to the submodule it generates. Assume also that there(&Xig¢)-
isomorphismsy; , : Aj — Ay for all 0 < j, k < N, with 0j ¢ 0 0 ; = id;. Let P4y, be the
projection x (M) — A, and P the projectiony (M) — (&).



Linear connection for higher-order ODEs 1689

Now define theR-bilinear operatorv : x (M) x x(M) — x (M) as follows. For all
Y e Ajand f, h € C*(M), set

Vy, Y i= 04 y1k © Pagiryn (Y 0k jy1 (YD)
VieYi = Pa ([ fE, Vi)
Vy, (f€) = Vs Y +[Y;, fE]
Vie(h§) == fE(h)E.
The addition+y in the first of these equations is to be read as addition Mod

Proposition 1 Defined as abovéy is a linear connection covariant with respect@p so
if g € G and its actionor¥ isg-Y,

VivZ = fVZ
Vy(f2) =Y()Z + fVrZ

Proof. The linearity and Leibnitz properties can be checked directly. Gheovariance
follows from the invariance of, A; and the covariance of the Lie bracket. O

In the next section | will show there is a decomposition of the jet-buddi&€ with
the above propertiesG being the group of automorphisms induced from the bundle
automorphisms oft : E — B. In other words, the decomposition is invariant under
time-dependent transformations of the dependent variables. For the sake of brevity, | will
refer to invariance (or covariance) with respect to this group of automorphisms as coordinate
invariance (covariance). It should be understood that this is different from invariance with
respect to transformation of¥ E which are not induced from bundle automorphisms of
t:E — B.

To see how this works, recall the theory of second-order ODE (SODE)

Xt = fe, x, %)
as found in [1,5, 13]. Here the SODE fieltlis a vector field on the first jet-bundIg'E,
9
r=. + x4 X0+ £ x, x@)XP.
The role of¢ in proposition 1 is played by. To obtain the remainder of the decomposition,
one calculates the Lie derivativérS. It is easily shown thalrS has three eigenvalues:

—1,0,4+1. The eigenspace corresponding to the zero eigenvalue is spanniéd e
+1-eigenspace’ is spanned by therf—vertical vector fieldsV, := XV, which can be

a !
constructed as(X¢). The remaining eigenspadé is called the horizontal space and is
spanned by the (in general non-commutative) basis vectors

H,:=X? -T2y, 1t = -1V, f".

From the definition, this decomposition is invariant under changes of coordinate. The
vertical endomorphism restricts to the isomorphiSm* — V, S(H,) = V,. Its inverse |
will denoteo. Following proposition 1, there is a linear connecti@rdefined by

6HL,I{I; =00 PV([Haa Vb]) = FZ};HC

VH(, Vi = PV([Haa Vb]) = F;ch

6\/“Hb == 0 O PH([Vaa Hb]) = 0
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Vv, Vo == Py([Va, Hp]) = 0
VrH, = Py ([T, H]) = T3 H,
VrVe = Py(I. V) = ToVs
Vu,T = VrH, +[H,, T] = —®%V,
Vy,I' = YV, +[Ve. T1 = H,
Vil = 0.

Here @ is a tensor defined in [13], with coordinate expression
@) = =XV (f") — Il — (1Y)

andT¢, := V,(T'%). The connectiorV was first given in [1].

It should be noted that the above expressions are somewhat redundant, since

(VyS)(Z) = 0 for all Y € x(J'E) and all Z € x(J'E). This fact leads to a more
concise notation developed by Mar¢zet al [11-13].

4. Invariant decomposition of JN E

The differential equation field and the vertical endomorphisthare defined for HODE as

for SODE. Therefore the first trial one conducts is to calculate the eigenvalues of the linear
map LrS. Unfortunately there are only three distinct eigenvalues, regardless of the value
of N: these are-1,0 andN. As in the N = 1 case, the 0-eigenspace is spanned by the
ODE fieldI" and theN-eigenspace consists of thery vertical vector fields

Vi={Vex(VE):x) v =0}
As in the N = 1 case, there is a natural bagig,, ..., V,} for V, with v, := XV =
SY(XE). It will be convenient to call the complementaryl-eigenspace the horizontal

submoduleH, although it contains elements which are vertical with respecto The
corresponding projections are

1

Py = — NI

'y N+1£rSo(£rS NI)
1

Py =——— LrSo(LprS+1T

% N(N+1)FO(F+)

Pr=dt®T.

The three submodulg§™), V and’H are coordinate invariant, but diff) = N dim(V).
However, H can be further decomposed using the following fact. When restricted to
x(JVE), kerS = V. Consequentlys has a trivial kernel when restricted fd, so we can
define

HY L= ST V) N .
The rest of the decomposition is defined inductively:
HI™ = ST H)YNH 1<j<N-1
For notational convenience, sit" = V.

Theorem 2 With submodules{’/ defined as above,
xUVEy=T)oH' e - oH".

Moreover the submodulg’ are isomorphic forj =0, ..., N — 1 and the decomposition
is coordinate invariant.
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Proof. SinceS andI" are coordinate invariant and the decomposition is constructed from
them alone, the decomposition is invariant. The projectiBpgnd Py + Py construct the
splitting
xUNE) =) ® x(JVE).
As noted alreadyS is an isomorphism when restricted t9. Therefore it remains only
to show that the/ have trivial intersection and that they exhayst/V E). Suppose that
Y e H/ N'HX, j < k. Then
SNHFyy e HNH ANy cHNY =0.
Now let Y € x(JNE) be non-zero, so that = Za’j )’J?Xf/). Let jo > O be such that
Y/ =0if j < jo. ThenS¥=°(Y) €V, s0Y e H* @ --- & HN. O

For the isomorphisma; ;1 : H/ — H/™ | will use
1
j+1
The remaining isomorphisms required by proposition 1 can be constructedofrom in
an obvious way. The benefit of this choice is that

oin: XV =V, 0<j<N.
This can be used to give a coordinate form for the inverse sap;:

0 j-1: X9 > Py(XU™D),

Ojj+1 = 0<]<N

It can then be shown that the basis elemef§ := oy ;(V,) have the form

N!
HY = o oV K (V) @)
N—k—1 . .
k+DIN — j)! . .
_ X;k) _ Z (+ +N|)kf ) F(ngj)be(ﬁkH) 3)
= k!

with the conventionH") = V,,.
The projectionsPyj, : x(JVE) — H/ can now be calculated in terms of tig/:

S N = ! .
a p JIN = j+k+ D (v jiktda )
P = <9(j) + Ze(k) Nkl L, ®H,”.
= Ik!

Here | have introduced the notation

1
(k1---k,) . (k1) (k)
rkekg, o, = V11 1Xbll Xy (f9).

Corollary 3. There exists a linear connection di E which is coordinate covariant.

It would obviously be desirable to express tHe' directly in terms of the coordinate basis
X® | however, for generaN | have not been able to do this. Therefore | will conclude
this section with some explicit formulae f&f = 2 andN = 3 (the N = 1 case collapses
to the well known expressions given in [15]).

For N = 2,

H® = x —2r@ty,
H(EO) — XL(;O) _ Fc(;Z)bX[(,l) + (2F(52)CF£2)}7 _ F(Sl)h)vb'
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For N =3,
H‘EZ) (2) 3F (3)17
H;l) (1) ZF(3)bX(2) + (6F(3)CF(3)b 21—~L(12)b) v,
. 2
H(O) X(O) FL(I3)le(71) + (21’*(({3)( F£3)b _ ér((l2)b)Xl(72)

+(2F((12)CF£3)b 6F(3)d1—w(3)c (3)b —or (S)CF(Z)b lgl)b) Vb-

5. Towards classification

Together with the decomposition gf(JVE) given in section 4, the linear connection
defined in section 3 has several useful properties. The first, following immediately from
the definition ofV, is that it leaves the decompositid® @ - - - & H" invariant.

Proposition 4 If Y € x(JYE)andZ e H/, j =0,...,N, thenVyZ € H/.

Also following directly from the definition is that the integral curveslofre geodesics
(in the sense of being self-parallel: there is no guarantee that the conn&cposserves
any metric onJVE).

Proposition 5 If V is the linear connection associated to the HODE figlthenV-I" = 0.

The above two results can be used to show that the connection encodes all of the
information contained in the system of HODE, since the connection uniquely determines
the HODE fieldT".

Theorem 6 If two HODE fieldsI” andI"’ determine the same connecti®h thenl” = I'.

Proof. Sincel and I'" must both annihilate the contact forrﬂg.) and satisfyI'(z) =
I''(¢+) = 1, there must exist® € C*(JVE) such thatl” =T + g*V,. From proposition 5
we have that

Vil = 0= Vpgy, (T + g°V,)

implying that
g'Vy,I' + Vr(g") Vo +g“VrV, = 0. @)

The last two terms are contained ¥hby proposition 4, so equation (4) implies that
(8°Vy,T.dx{y_y) =0.

Now Vy I' = V-V, — [, V,], so we must have
0= g“(T, Vul. dx{y_1)) = —g"x{y, (N0 sum oven).

Continuity then gives the resuft’ =0,a =1, ... ,m. O

As a consequence of this theorem, classification of systems of HODE up to time-

dependent transformations of the dependent variables is equivalent to the classification of
the connectiorv.
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6. Discussion

The results in this paper are only a first step toward a coordinate invariant classification of
systems of higher-order ordinary differential equations. Having discovered an appropriate
linear connection, the immediate next step is to examine its curvature and torsion. While
that could have been done in this paper, the properties of these objects lead to a rather large
amount of new material.

In particular, the fact that the connection preserves the decompositigh E) =
HO® --- @ H" is reflected in a decomposition of the curvature tensor into a set of tensors
defined along the projection), : JYE — E. One can easily show that these curvature
component tensors give necessary conditions for systems of HODE to be equivalent. In the
N = 1 case they are the various objedts 6, R and Rie defined in, for example, [13].
This was shown in [1].

To what extent such necessary conditions are also sufficient is still an open question.
It is to be expected that there are results analogous to those in [5, 14] for the HODE case.
In particular, it seems clear that vanishing curvature and torsion, together with a few other
conditions, ought to imply equivalence to the trivial systefy, ; = 0.
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