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A linear connection for higher-order ordinary differential
equations
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Received 17 October 1995

Abstract. A linear connection is defined on the spaceJNE of N -jets of sections ofτ : E → B,
whereB is one-dimensional. This is a first step toward classifying (N + 1)th-order, time-
dependent ordinary differential equations. The module of vector fields onJNE splits into
coordinate invariant components,N + 1 of them isomorphic and one component generated by
the differential equation field. The connection is shown to uniquely determine the differential
equation field to which it is associated.

1. Introduction

Recent advances in the geometric theory of second-order ordinary differential equations
(SODE) have provided a linear algebraic criterion for the complete decoupling of systems
of SODE [2, 13] and significant progress in the inverse problem of Lagrangian mechanics
[7]. Within the last two years, there have been results which make it possible to identify
those systems of SODE which are equivalent to trivial systems [5] or to systems in which the
forces are independent of velocities [14]. Central to these results have been two geometric
objects, thedynamical covariant derivative∇ and theJacobi endomorphism8, defined in
[12, 13]. These objects arise in the theory of tensor fields defined along the tangent bundle
projection, developed principally by Martı́nez, Carĩnena and Sarlet [11, 12, 19]. They are a
development of the generalized vector fields originally introduced by Johnson [9].

Given the utility of these objects in the study of SODE, it is reasonable to ask if similar
structures can be found for systems of higher-order ordinary differential equations (HODE).
This paper is a first step towards their construction.

Some of the necessary structure is known: a paper published in 1986 by Crampin, Sarlet
and Cantrijn [6] explored the geometry of HODE on the higher-order tangent bundleT NM

(in the case of (N + 1)th-order ODE on the manifoldM). This built on earlier work by
authors such as Tulczyjew [20], de Léon [8] and Krupka and Musilova [10]. In particular
Crampin et al established conditions for a given system of HODE to be derivable from
a higher-order Lagrangian and formulated a ‘prototype Noether’s theorem’ which reduced
to Noether’s in the SODE case. There has also been recent work directed at applying the
theory of vector fields along the projection to HODE [3]. However, the core of the theory
of vector fields along the tangent bundle projection is that the moduleχ(TM) of vector
fields onTM splits as the direct sum ofvertical andhorizontal submodules,

χ(TM) = V(TM)⊕ H(TM)
† E-mail: matgbb@lure.latrobe.edu.au
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with the V(TM) and H(TM) being isomorphic. The choice of a horizontal submodule
specifies a horizontal subspace ofTp(TM) at each pointp ∈ TM and is therefore equivalent
to a Cartan–Ehresmann connection onTM (see for example [4, 15]), which can in turn be
used to define a linear connection on the jet spaceJ 1E [1]. I will show in section 3 that
a similar linear connection can be constructed onJNE provided there is an appropriate
invariant decompostion ofχ(JNE).

In the SODE theory this connection is determined byL0S, the Lie derivative of the
vertical endomorphism with respect to the differential equation field. Hence the problem
with the current state of knowledge of higher-order systems: the eigenspaces ofL0S are
too big. Although Crampinet al in [6] use the HODE to define a splitting

χ(T NM) = V(TM)⊕ H(TM)
the dimension ofH(TM) is N times that ofV(TM), so they cannot be isomorphic when
N > 1. In their recent work Cariñena, Lopez and Martı́nez do not address the question of
splitting. Since they study the higher-order tangent bundle as a nested structure of tangent
bundles, they are confronted by the lack of a differential equation field with which to define
a connection except on the ‘top’ tangent space.

What is really needed is a further splitting of the horizontal space

χ(T NM) = V(T NM)⊕
N−1⊕
m=0

H(m)(T NM)

such that all the submodulesH(m)(TM) are isomorphic toV(TM). Of course they should
also be invariant under coordinate transformations, disqualifying a naive approach based on
induced coordinates.

In this paper I will prove that such a splitting exists and explicitly construct the
submodulesH(m) and the linking isomorphisms in section 4. In fact I will work not with
T NM but in the more general setting of theN th-order jet bundleJNE, whereτ : E → B

is a fibre bundle over a one-dimensional base (the independent variable) whose fibres are
homeomorphic toM. This allows the study of time-dependent HODE (‘time’ being a
generic term for the independent variable).

In section 5 I note some properties of the resulting linear connection. In particular it
will be proved that the map from HODE to linear connection is one-to-one. Hence the
classification of HODE up to time-dependent transformations of the dependent variables is
equivalent to the classification of the associated linear connections.

2. Background and notation

Let τ : E → B be a smooth fibre bundle with one-dimensional baseB. I will write JNE

for theN th-order jet-bundle of sectionsB → E. A typical fibre τ−1(b) will be calledM.
Then if t is a local coordinate onB andx ≡ (x1, . . . , xm) are local coordinates onM, I
will implicitly assume some local trivialization and take(t, x) ≡ (t, x1, . . . , xm) to be local
coordinates onE. These induce coordinates(t, x, x(1), . . . , x(N)) for JNE, so that the point
with these coordinates is theN -jet containing the section

s 7→ x + x(1)(s − t)+ 1
2x(2)(s − t)2 + · · · + 1

N !
x(N)(s − t)N .

Using this correspondence, smooth coordinate transition functions onE induce smooth
transition functions onJNE. I will also use the standard notationf (t, [x]) for a function
evaluated at some point ofJNE, with [x] denoting dependence on the derivatives ofx.
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The prolongation of a section is defined by the same correspondence. Ifσ : B → E

is a section, then the Taylor series expansion ofσ about t determines a pointσ(N)(t) in
(τ ◦ π0

N)
−1(t). So if the coordinate form ofσ is t 7→ σ(t), then the prolongationσ(N) has

the local expression

σ(N) : t 7→ (t, σ (t),
dσ

dt
(t), . . . ,

dNσ

dtN
(t)).

The projectionπnN : JNE → J nE, n < N , is defined in coordinates by truncation. Thus
there is a projectionπ0

N : JNE → E by the identificationJ 0 ≡ E.
The module of sections of the tangent bundleT JNE, denotedχ(JNE), is spanned by

the vector fields{
∂

∂t
,
∂

∂xa
,
∂

∂a(1)
, . . . ,

∂

∂xa(N)
: a = 1, . . . , m

}
.

For the sake of convenience and clarity, from here on I will writeX
(j)
a := ∂/∂xa(j). It should

be noted that forj < N , X(j)a is not a point-wise function of∂/∂xa. For this reason I will
insist on distinguishingX(0)a , a vector field onJNE, fromXa := ∂/∂xa as a vector field on
E. They are related by the projectionπ0

N∗X
(0)
a = Xa.

It will be convenient to define the module

χ̄(JNE) := {Y ∈ χ(JNE) : Y (t) = 0}
of vector fields with no time-like component.

If Y is vector field onE, then the flowψε of Y carries sections ofτ to sections by
deforming their graphs. Note that such flows need not preserve the fibres ofτ : see [16].
Since sections define points inJNE, there is a prolongation ofψε to a flowψ(N)

ε of JNE.
This allows us to define the prolongationYC of Y by requiring

YC(f ) = d

dε
f ◦ ψ(N)

ε

to hold for all smoothf : JNE → R. The C stands for complete lift, a term
used by some authors [15] in place of prolongation. The coordinate form ofYC , if
Y = Y 0 ∂

∂t
+ Y aXa ∈ χ(E), is

YC = Y 0 ∂

∂t
+ Y aX(0)a + Y a(1)X

(1)
a + · · · + Y a(N)X

(N)
a

where

Y a(k) :=
(

d

dt

)k
(Y a − xa(1)Y

0) k = 1, . . . , N.

The contact forms onJNE are given by

θa(j) := dxa(j) − xa(j+1)dt j = 0, . . . , N − 1.

The ideal generated by the contact forms will be denoted2: while the contact forms
are not tensorial with respect to coordinate changes onE, the ideal2 is invariant under
such changes. Suppose thatσ : B → E is a section whose prolongation gives a section
σ(N) : B → JNE. Then the pull-back of the contact forms satisfiesσ ∗

(N)2 = 0. Conversely,
any section ofτ ◦ π0

N : JNE → B which annihilates the contact forms in this way is the
prolongation of a section ofτ : E → B.
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The vertical endomorphismS can be defined in terms of the contact forms as

S :=
N−1∑
j=0

(j + 1)θa(j) ⊗X(j+1)
a .

Note that

S(X(j)a ) = (j + 1)X(j+1)
a j = 0, . . . , N − 1 S(X(N)a ) = 0.

Using the fact that

S

(
∂

∂t

)
= −

N∑
j=1

jxa(j)X
(j)
a

the Nijhenhuis bracketNS of S can be shown to satisfy

1
2NS(Y, Z) = Y (t)S(Z)− Z(t)S(Y ).

Thus the resultLS(Y )S = S◦LYS derived in [6] for the autonomous case must be modified:

(LS(Y )S)(Z)− S((LYS)(Z)) = Y (t)S(Z)− Z(t)S(Y ). (1)

2.1. The HODE field

Definition 1. The vector field0 ∈ χ(JNE) is an (N + 1)th-order ODE field, or more
generally a higher-order ODE field (HODE), if it satisfies the two conditions

0 ∈ 2⊥ 0(t) = 1.

The second of these conditions effectively fixes the coordinates onB: sinceB is one-
dimensional, the resulting loss of generality is not great.

In coordinates, a HODE0 will have the form

0(t, [x]) = ∂

∂t
+ xa(1)X

(0)
a + · · · + xa(N)X

(N−1)
a + f a(t, [x])X(N)a .

It can easily be checked that the integral curves of0 are prolongations of solutions of the
system of ODE(

d

dt

)N+1

xa = f a(t, x, . . . , x(N)) a = 1, . . . , m.

Moreover every solution of this system is the projection of an integral curve of0.

3. Linear connections

Consider a manifoldM with a group of automorphismsG. There is an induced action of
G on the module of vector fieldsχ(M). Supposeχ(M) has aG-invariant decomposition

χ(M) = 〈ξ〉 ⊕ A0 ⊕ · · · ⊕ AN N > 1

where〈ξ〉 is the one-dimensional submodule generated byξ . I will require thatξ is invariant
underG, in addition to the submodule it generates. Assume also that there existC∞(M)-
isomorphismsσj,k : Aj → Ak for all 0 6 j, k 6 N , with σj,k ◦ σk,j = idj . Let PA(k) be the
projectionχ(M) → Ak andPξ the projectionχ(M) → 〈ξ〉.
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Now define theR-bilinear operator∇ : χ(M) × χ(M) → χ(M) as follows. For all
Yj ∈ Aj andf, h ∈ C∞(M), set

∇Yj Yk := σj+N1,k ◦ PA(j+N1)([Yj , σk,j+N1(Yk)])

∇f ξYj := PA(j)([f ξ, Yk])

∇Yj (f ξ) := ∇f ξYj + [Yj , f ξ ]

∇f ξ (hξ) := f ξ(h)ξ.

The addition+N in the first of these equations is to be read as addition modN .

Proposition 1. Defined as above,∇ is a linear connection covariant with respect toG, so
if g ∈ G and its action onY is g · Y ,

∇f YZ = f∇YZ

∇Y (fZ) = Y (f )Z + f∇YZ

∇g·Y (g · Z) = g · (∇YZ).

Proof. The linearity and Leibnitz properties can be checked directly. TheG-covariance
follows from the invariance ofξ, Aj and the covariance of the Lie bracket. �

In the next section I will show there is a decomposition of the jet-bundleJNE with
the above properties,G being the group of automorphisms induced from the bundle
automorphisms ofτ : E → B. In other words, the decomposition is invariant under
time-dependent transformations of the dependent variables. For the sake of brevity, I will
refer to invariance (or covariance) with respect to this group of automorphisms as coordinate
invariance (covariance). It should be understood that this is different from invariance with
respect to transformation ofJNE which are not induced from bundle automorphisms of
τ : E → B.

To see how this works, recall the theory of second-order ODE (SODE)

ẍa = f a(t, x, ẋ)

as found in [1, 5, 13]. Here the SODE field0 is a vector field on the first jet-bundleJ 1E,

0 = ∂

∂t
+ xa(1)X

(0)
a + f a(t, x, x(1))X

(1)
a .

The role ofξ in proposition 1 is played by0. To obtain the remainder of the decomposition,
one calculates the Lie derivativeL0S. It is easily shown thatL0S has three eigenvalues:
−1, 0,+1. The eigenspace corresponding to the zero eigenvalue is spanned by0. The
+1-eigenspaceV is spanned by theπ0

1 -vertical vector fieldsVa := X(1)a , which can be
constructed asS(XCa ). The remaining eigenspaceH is called the horizontal space and is
spanned by the (in general non-commutative) basis vectors

Ha := X(0)a − 0baVb, 0
b
a := − 1

2Vaf
b.

From the definition, this decomposition is invariant under changes of coordinate. The
vertical endomorphism restricts to the isomorphismS : H → V, S(Ha) = Va. Its inverse I
will denoteσ . Following proposition 1, there is a linear connection∇̄ defined by

∇̄HaHb = σ ◦ PV ([Ha, Vb]) = 0cabHc

∇̄HaVb = PV ([Ha, Vb]) = 0cabVc

∇̄VaHb == σ ◦ PH([Va,Hb]) = 0
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∇̄VaVb == PH([Va,Hb]) = 0

∇̄0Ha = PH([0,Ha]) = 0baHb

∇̄0Va = PV ([0, Va]) = 0baVb

∇̄Ha0 = ∇̄0Ha + [Ha, 0] = −8b
aVb

∇̄Va0 = ∇̄0Va + [Va, 0] = Ha

∇̄00 = 0.

Here8 is a tensor defined in [13], with coordinate expression

8b
a := −X(0)a (f b)− 0ca0

b
c − 0(0ba)

and0cab := Va(0
c
b). The connection̄∇ was first given in [1].

It should be noted that the above expressions are somewhat redundant, since
(∇̄Y S)(Z) = 0 for all Y ∈ χ(J 1E) and all Z ∈ χ̄(J 1E). This fact leads to a more
concise notation developed by Martı́nezet al [11–13].

4. Invariant decomposition of JNE

The differential equation field0 and the vertical endomorphismS are defined for HODE as
for SODE. Therefore the first trial one conducts is to calculate the eigenvalues of the linear
mapL0S. Unfortunately there are only three distinct eigenvalues, regardless of the value
of N : these are−1, 0 andN . As in theN = 1 case, the 0-eigenspace is spanned by the
ODE field0 and theN -eigenspace consists of thevery vertical vector fields

V := {V ∈ χ̄(JNE) : πN−1
N∗ V = 0}.

As in theN = 1 case, there is a natural basis{V1, . . . , Vm} for V, with Va := X(N)a =
SN(XCa ). It will be convenient to call the complementary−1-eigenspace the horizontal
submoduleH, although it contains elements which are vertical with respect toπ0

N . The
corresponding projections are

PH := 1

N + 1
L0S ◦ (L0S −NI)

PV := 1

N(N + 1)
L0S ◦ (L0S + I )

P0 := dt ⊗ 0.

The three submodules〈0〉, V andH are coordinate invariant, but dim(H) = N dim(V).
However, H can be further decomposed using the following fact. When restricted to
χ̄(JNE), kerS = V. ConsequentlyS has a trivial kernel when restricted toH, so we can
define

HN−1 := S−1(V) ∩ H.
The rest of the decomposition is defined inductively:

Hj−1 := S−1(Hj ) ∩ H 1 6 j 6 N − 1.

For notational convenience, setHN := V.

Theorem 2. With submodulesHj defined as above,

χ(JNE) ' 〈0〉 ⊕ H0 ⊕ · · · ⊕ HN.

Moreover the submodulesHj are isomorphic forj = 0, . . . , N − 1 and the decomposition
is coordinate invariant.
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Proof. SinceS and0 are coordinate invariant and the decomposition is constructed from
them alone, the decomposition is invariant. The projectionsP0 andPH + PV construct the
splitting

χ(JNE) = 〈0〉 ⊕ χ̄(JNE).

As noted already,S is an isomorphism when restricted toH. Therefore it remains only
to show that theHj have trivial intersection and that they exhaustχ̄(JNE). Suppose that
Y ∈ Hj ∩ Hk, j < k. Then

SN−k(Y ) ∈ HN+j−k ∩ V ⊂ H ∩ V = 0.

Now let Y ∈ χ̄(JNE) be non-zero, so thatY = ∑
a,j Y

a
j X

(j)
a . Let j0 > 0 be such that

Y aj = 0 if j < j0. ThenSN−j0(Y ) ∈ V, soY ∈ Hj0 ⊕ · · · ⊕ HN . �

For the isomorphismσj,j+1 : Hj → Hj+1 I will use

σj,j+1 = 1

j + 1
S 0 6 j < N.

The remaining isomorphisms required by proposition 1 can be constructed fromσj,j+1 in
an obvious way. The benefit of this choice is that

σj,N : X(j)a 7→ Va 0 6 j < N.

This can be used to give a coordinate form for the inverse mapσj,j−1:

σj,j−1 : X(j)a 7→ PH(X
(j−1)
a ).

It can then be shown that the basis elementsH
(j)
a := σN,j (Va) have the form

H(k)
a = N !

k!
σN−k(Va) (2)

= X(k)a −
N−k−1∑
j=0

(j + k + 1)!(N − j)!

N ! k!
0(N−j)b
a H

(j+k+1)
b (3)

with the conventionH(N)
a = Va.

The projectionsPH(j) : χ(JNE) → Hj can now be calculated in terms of theH(j)
a :

PH(j) =
(
θa(j) +

j−1∑
k=0

θb(k)
j !(N − j + k + 1)!

N !k!
0
(N−j+k+1)a
b

)
⊗H(j)

a .

Here I have introduced the notation

0(k1···kr )ab1···br := − 1

N + 1
X
(k1)
b1
. . . X

(kr )
br
(f a).

Corollary 3. There exists a linear connection onJNE which is coordinate covariant.

It would obviously be desirable to express theH(j)
a directly in terms of the coordinate basis

X(k)a , however, for generalN I have not been able to do this. Therefore I will conclude
this section with some explicit formulae forN = 2 andN = 3 (theN = 1 case collapses
to the well known expressions given in [15]).

ForN = 2,

H(1)
a = X(1)a − 20(2)ba Vb

H (0)
a = X(0)a − 0(2)ba X

(1)
b + (20(2)ca 0(2)bc − 0(1)ba )Vb.
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ForN = 3,

H(2)
a = X(2)a − 30(3)ba Vb

H (1)
a = X(1)a − 20(3)ba X

(2)
b + (60(3)ca 0(3)bc − 20(2)ba )Vb

H (0)
a = X(0)a − 0(3)ba X

(1)
b + (20(3)ca 0(3)bc − 2

3
0(2)ba )X

(2)
b

+(20(2)ca 0(3)bc − 60(3)da 0
(3)c
d 0(3)bc − 20(3)ca 0(2)bc − 0(1)a b)Vb.

5. Towards classification

Together with the decomposition ofχ(JNE) given in section 4, the linear connection
defined in section 3 has several useful properties. The first, following immediately from
the definition of∇̄, is that it leaves the decompositionH0 ⊕ · · · ⊕ HN invariant.

Proposition 4. If Y ∈ χ(JNE) andZ ∈ Hj , j = 0, . . . , N , then∇̄YZ ∈ Hj .

Also following directly from the definition is that the integral curves of0 are geodesics
(in the sense of being self-parallel: there is no guarantee that the connection∇̄ preserves
any metric onJNE).

Proposition 5. If ∇̄ is the linear connection associated to the HODE field0, then∇̄00 = 0.

The above two results can be used to show that the connection encodes all of the
information contained in the system of HODE, since the connection uniquely determines
the HODE field0.

Theorem 6. If two HODE fields0 and0′ determine the same connection∇̄, then0′ = 0.

Proof. Since0 and 0′ must both annihilate the contact formsθa(j) and satisfy0(t) =
0′(t) = 1, there must existga ∈ C∞(JNE) such that0′ = 0 + gaVa. From proposition 5
we have that

∇̄00 = 0 = ∇̄0+gaVa (0 + gaVa)

implying that

ga∇̄Va0 + ∇̄0(g
a) Va + ga∇̄0Va = 0. (4)

The last two terms are contained inV by proposition 4, so equation (4) implies that

(ga∇̄Va0, dx
b
(N−1)) = 0.

Now ∇̄Va0 = ∇̄0Va − [0, Va], so we must have

0 = ga([0, Va], dx
b
(N−1)) = −gbxb(N) (no sum overb).

Continuity then gives the resultga = 0, a = 1, . . . , m. �

As a consequence of this theorem, classification of systems of HODE up to time-
dependent transformations of the dependent variables is equivalent to the classification of
the connection∇̄.
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6. Discussion

The results in this paper are only a first step toward a coordinate invariant classification of
systems of higher-order ordinary differential equations. Having discovered an appropriate
linear connection, the immediate next step is to examine its curvature and torsion. While
that could have been done in this paper, the properties of these objects lead to a rather large
amount of new material.

In particular, the fact that the connection preserves the decompositionχ(JNE) =
H0 ⊕ · · · ⊕ HN is reflected in a decomposition of the curvature tensor into a set of tensors
defined along the projectionπ0

N : JNE → E. One can easily show that these curvature
component tensors give necessary conditions for systems of HODE to be equivalent. In the
N = 1 case they are the various objects8, θ , R and Rie defined in, for example, [13].
This was shown in [1].

To what extent such necessary conditions are also sufficient is still an open question.
It is to be expected that there are results analogous to those in [5, 14] for the HODE case.
In particular, it seems clear that vanishing curvature and torsion, together with a few other
conditions, ought to imply equivalence to the trivial systemxa(N+1) = 0.
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[3] Cariñena J F, Ĺopez C and Martı́nez E 1991 Sections along a map applied to higher-order Lagrangian
mechanics, Noether’s theoremActa Applicandae Mathematicae25 127–51

[4] Crampin M 1981 On the differential geometry of the Euler–Lagrange equations, and the inverse problem of
Lagrangian dynamicsJ. Phys. A: Math. Gen.14 2567–75

[5] Crampin M, Mart́ınez E and Sarlet W 1994 Linear connections for systems of second-order ordinary
differential equationsPreprint The Open University, UK

[6] Crampin M, Sarlet W and Cantrijn F 1986 Higher-order differential equations and higher-order lagrangian
mechanicsMath. Proc. Camb. Phil. Soc.99 565–87

[7] Crampin M, Sarlet W, Martı́nez E, Byrnes G and Prince G E 1994 Towards a geometrical understanding of
Douglas’s solution of the inverse problem of the calculus of variationsInverse Problems10 245–60

[8] de Léon M and Villaverde C 1981 Calcul différentiel sur les fibŕes tangents d’ordre supérieurC.R. Acad. Sc.
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